M-completeness Is Seldom Monadic over Graphs

نویسندگان

  • J. Adámek
  • Walter Tholen
چکیده

For a set M of graphs the category CatM of all M-complete categories and all strictly M-continuous functors is known to be monadic over Cat. The question of monadicity of CatM over the category of graphs is known to have an affirmative answer when M specifies either (i) all finite limits, or (ii) all finite products, or (iii) equalizers and terminal objects, or (iv) just terminal objects. We prove that, conversely, these four cases are (essentially) the only cases of monadicity of CatM over the category of graphs, provided that M is a set of finite graphs containing the empty graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Associated Graphs of Modules Over Commutative Rings

Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...

متن کامل

The Monadic Quantifier Alternation Hierarchy over Graphs is Infinite

We show that in monadic second-order logic over finite directed graphs, a strict hierarchy of expressiveness is obtained by increasing the (second-order) quantifier alternation depth of formulas. Thus, the “monadic analogue” of the polynomial hierarchy is found to be strict, which solves a problem of Fagin. The proof is based on automata theoretic concepts (rather than Ehrenfeucht-Fraı̈ssé games...

متن کامل

Tree-width and the monadic quantifier hierarchy

It is well known that on classes of graphs of bounded tree-width, every monadic second-order property is decidable in polynomial time. The converse is not true without further assumptions. It follows from the work of Robertson and Seymour, that if a class of graphs K has unbounded tree-width and is closed under minors, then K contains all planar graphs. But on planar graphs, three-colorability ...

متن کامل

A Hierarchical Approach to Graph Automata and Monadic Second-Order Logic over Graphs

A hierarchical approach to the decomposition of graphs is introduced which is related to the notion of tree decomposition. On this basis a hierarchical automaton model for graphs is deened. We show that this automaton model is (relative to an appropriate class of graphs) equivalent to monadic second-order logic in expressive power, properly strengthening previous results on monadic second-order...

متن کامل

Graph structure and Monadic second-order logic

Exclusion of minor, vertex-minor, induced subgraph Tree-structuring Monadic second-order logic : expression of properties, queries, optimization functions, number of configurations. Mainly useful for tree-structured graphs (Second-order logic useless) Tools to be presented Algebraic setting for tree-structuring of graphs Recognizability = finite congruence ≡ inductive computability ≡ finite det...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000